ПРИЛОЖЕНИЕ НА ОПТИЧНИ ТЕХНИКИ ЗА АНАЛИЗ НА КАШКАВАЛ ПРИ СЪХРАНЕНИЕ, Добрин Добрев
2019-06-01 | T+ | T- |

Резюме: В статията е анализирано приложението на програмна среда LabView при анализ на хранителни и в частност млечни продукти. Използван е метод “Color spectrum” (Цветови спектър) на NI LabView. За представянето на цветовите характеристики на пикселите в изображенията е използван цветовия модел HSL. Чрез изменението на цветовите характеристики са получени данни за понижаване качеството на кашкавал и поява на плесен. Адаптиран и използван е програмен и апаратен инструментариум за експресна, автоматизирана оценка на основни свойства на кашкавал, който включва лабораторен модел на система за получаване, обработка и анализ на изображения.

Ключови думи: Оптични характеристики, млечни продукти, LabVIEW, обработка на изображения

5. Литература

[1] Andreeva, H., L. Kostadinova-Georgieva, N. Katrandzhiev. (2017). Digitizing the readings of an analog pointer device in programing environment LabVIEW. Scientific works of University of Food technologies, vol. 64, iss.1, pp.257-262

[2] Archived: IMAQ Vision for LabVIEW User Manual - National Instruments, www.ni.com, available on 15.05.2019.

[3] Baycheva S., Z. Zlatev, A. Dimitrova. (2016), Investigating the possibilities of document cameras for quality assessment of foodstuffs by measuring of color. International conference of virtual learning (ICVL), pp.204-208

[4] Ganchovska, V., P. Boyanova, L. Kostadinova, P. Panayotov. (2012). Determination some quality characteristics of cheese on the base of images in the visible range of spectra. Scientific works of UFT volume LIX- 2012 “food science, engineering and technologies”, pp.123-127. (in Bulgarian)

[5] Georgieva, A., I. Dimov. (2013). Investigation of possibilities of bread enriched with dried coffee blend “Inca” Part 2: The quality of enriched white bread. Food science and technology, vol.1, №22, ISSN: 2073-8684, pp. 61-64.

[6] Mladenov, M., S. Penchev, M. Deyanov. (2015). Complex assessment of food products quality using analysis of visual images, spectrophotometric and hyperspectral characteristics. International Journal of Engineering and Innovative Technology (IJEIT), Vol. 4, Iss.12, ISSN: 2277-3754, pp.23-32.

[7] Shivacheva, G., V. Nedeva, V. Bochev, E. Dimova. (2016). Innovative approach to programming training using virtual laboratories. ARTTE, Vol. 3, ISSN 1314-8796, pp. 203-210.

[8] Shivacheva, I. (2015). Multimedia in education – art and professionalism. Journal of Innovation and entrepreneurship, vol.3-4, ISSN 1314-9180, pp.24-37.

[9] Stoykova, V. (2015). Interactive environments for training in the higher education. International Conference on e-Learning, e-Learning’15, Berlin, ISSN 2367-6698, pp.268-273.

[10] Veleva-Doneva, P., Ts. Draganova, S. Atanasova, G. Beev. (2008). Detection of infected with staphylococcus and streptococcus milk samples by spectral analysis. Proceedings of Ruse university, vol. 47, No. 3.1, pp.141-145.

[11] Yankov, K. (2014). Identification of Effective Doses in Binary Mixtures. Proc. Int. Conf. on Information Technologies (InfoTech-2014) St. Constantine and Elena resort, Bulgaria, sept.18-20, 2014, ISSN 1314-1023, pp.316-324.

[12] Zhelyazkova, M., I. Taneva. (2016). Statistical modeling of the process syneresis of the production of yogurt with water extract of Rosa canina. Journal of Pharmacognosy and Phytochemistry, vol. 5, iss. 2, part C, ISSN 2278-4136, pp.204-206.

[13] Zlatev, Z, M. Vasilev, T. Pehlivanova. (2017). Selection of informative color features for classification of object areas of white brined cheese and mold. Applied Researches in Technics, Technologies and Education (ARTTE), vol.5, No.2, pp.94-102.

Контакти

инж. Добрин Добрев

Тракийски университет–Стара Загора, Факултет „Техника и технологии“ - Ямбол 

e-mail: dobrin.mail@gmail.com